Mostrar el registro sencillo del ítem

dc.contributor.advisorParada Prieto, Elmer Alejandro
dc.contributor.advisorIllera Bustos, Mario Joaquin
dc.contributor.authorBacca, Camilo
dc.date.accessioned2024-03-22T16:47:42Z
dc.date.available2024-03-22T16:47:42Z
dc.date.issued2022-12-06
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6767
dc.description.abstractEste proyecto se divide en varias partes, primero se centra en el análisis de las cargas que se tomaran como caso de estudio y la forma en que se adquieren estas cargas, segundo se elige el algoritmo de optimización para el diseño de la microred y las función objetivo que se optimizara con la ayuda del algoritmo, por último se genera la simulación la de la microrred con los resultados arrojados por el algoritmo y seguido se comparan los resultados con microrredes que su energía es suministrada por una sola fuente de energía renovable.spa
dc.description.tableofcontentsIntroducción 9 1. Descripción del problema 11 1.1 Planteamiento del problema 11 1.2 Justificación 15 1.3 Beneficios tecnológicos 17 1.4 Beneficios económicos 17 1.5 Beneficios sociales 17 1.6 Beneficios institucionales y empresariales 18 1.7 Objetivos 19 1.7.1 Objetivo general 19 1.7.2 Objetivos específicos 19 1.8 Delimitaciones 19 2. Marco referencial 20 2.1 Antecedentes 20 2.2 Marco teórico 23 2.2.1 Energía Solar Fotovoltaica 23 2.2.1.1 La radiación solar 24 2.2.2 Energía Eólica 27 2.2.2.1 Eficiencia energética 30 2.2.3 Sistema de gestión de energía 30 2.2.4 Microrred 31 2.2.5 Matlab 32 2.2.5.1 Simulink 5 33 2.2.6 Algoritmos metaheurísticos 2.2.6.1 2.2.6.2 2.2.6.3 3. Algoritmo de optimización de ballenas (WOA) Optimizador Lobo Gris (GWO) Algoritmo de optimización Hormiga León (ALO) Diseño Metodológico 3.1 3.2 Investigación del estado del arte del diseño de microrredes híbridas. Diseño de la microrred híbrida. 3.2.1 Perfil de carga 3.2.2 Búsqueda de Bases de Datos 3.2.3 Elección de algoritmo de optimización 3.3 Desarrollo del modelo de simulación de la microrred. 3.3.1 Modelado del generador fotovoltaico 3.3.2 Modelado del inversor 3.3.3 Modelado de la Turbina Eólica. 3.4 4. Evaluación del desempeño de la microrred. Resultados 5. Conclusiones Recomendaciones Referencias Anexos 33 35 40 47 56 57 60 60 68 72 77 78 83 86 89 97 105 107 108 118spa
dc.format.extent120 páginas. ilustraciones,(Trabajo completo) 3.334 KBspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Francisco de Paula Santanderspa
dc.rightsDerechos Reservados - Universidad Francisco de Paula Santander, 2022spa
dc.sourcehttps://catalogobiblioteca.ufps.edu.co/descargas/tesis/1161202.pdfspa
dc.titleDiseño y análisis de una microrred híbrida compuesta de generación fotovoltaica y eólica para la ciudad de Cúcuta, Norte de Santander.spa
dc.typeTrabajo de grado - Pregradospa
dcterms.referencesJ. D.C, «Atlas Interactivo - Radiación IDEAM,» Atlas.ideam.gov.co, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 13- May- 2021]spa
dcterms.references. D.C, «Atlas Interactivo - Vientos - IDEAM,» Atlas.ideam.gov.co, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html. [Accessed: 13- May- 2021].spa
dcterms.references«10 consecuencias del calentamiento global | Ingredientes que Suman,» Ingredientes que Suman, 2016. [Online]. Available: https://blog.oxfamintermon.org/10consecuencias-del-calentamientoglobal/#:~:text=Sequ%C3%ADas%2C%20huracanes%2C%20hambre%2C%20pobrez a,y%20como%20lo%20conocemos%20hoy. [Accessed: 13- May- 2021].spa
dcterms.referencesL. Yaniz, «5 acciones para que los países hagan frente al cambio climático, » Interamerican Association for Environmental Defense (AIDA), 2017. [Online]. Available: https://aida-americas.org/es/blog/5-acciones-para-que-los-pa-ses-haganfrente-al-cambio-clim-tico. [Accessed: 13- May- 2021].spa
dcterms.references«¿Qué es el Acuerdo de París?,», Unfccc.int, 2017. [Online]. Available: https://unfccc.int/es/process-and-meetings/the-paris-agreement/que-es-el-acuerdo-deparis. [Accessed: 13- May- 2021].spa
dcterms.referencesP. Molina, «Costa Rica será 100% renovable en 2030, » pv magazine Latin America, 2021. [Online]. Available: https://www.pv-magazine-latam.com/2021/01/12/costa-ricasera-100-renovable-en2030/#:~:text=Costa%20Rica%20inaugur%C3%B3%20en%202012,%2C%20con%20 12%2C39%25. [Accessed: 13- May- 2021].spa
dcterms.references«BNamericas - La cartera chilena de ERNC por US$11.040mn e..., » BNamericas.com, 2021. [Online]. Available: https://www.bnamericas.com/es/noticias/la-cartera-chilenade-ernc-por-us11040mn-enevaluacion#:~:text=Por%20tecnolog%C3%ADa%2C%20la%20energ%C3%ADa%20s olar,)%20y%20a%20biomasa%20(1).&text=Su%20mayor%C3%ADa%20son%20inici ativas%20solares,de%20la%20firma%20espa%C3%B1ola%20Ibere%C3%B3lica. [Accessed: 13- May- 2021].spa
dcterms.references«Informe General 2020, »Mem.gob.gt, 2021. [Online]. Available: https://mem.gob.gt/wp-content/uploads/2021/02/Informe-MEM-2020.pdf. [Accessed: 13- May- 2021].spa
dcterms.references«Informe Oferta y Generación Diciembre 2020,» Xm.com.co, 2021. [Online]. Available: https://www.xm.com.co/Informes%20Mensuales%20de%20Anlisis%20del%20Mercad o/02_Informe_Oferta_y_Generacion_12_2020.pdf. [Accessed: 13- May- 2021].spa
dcterms.referencesM. Marti and J. Cárdenas, «La matriz energética de Colombia se renueva - Energía para el Futuro, »Energía para el Futuro, 2019. [Online]. Available: https://blogs.iadb.org/energia/es/la-matriz-energetica-de-colombia-se-renueva/. [Accessed: 13- May- 2021].spa
dcterms.referencesE. S.A.S., «Los departamentos de La Guajira, Cesar y Antioquia destacan en sostenibilidad,» Diario La República, 2020. [Online]. Available: https://www.larepublica.co/especiales/colombia-potencia-energetica/losdepartamentos-de-la-guajira-cesar-y-antioquia-destacan-en-sostenibilidad-2966412. [Accessed: 13- May- 2021].spa
dcterms.referencesJ. Chacón Guadalix, «Las microrredes como herramienta de gestión energética | OpenMind, »OpenMind,2015.[Online].Available:https://www.bbvaopenmind.com/cien cia/medioambiente/las-microrredes-como-herramienta-de-gestion-energetica/. [Accessed: 13- May- 2021].spa
dcterms.referencesP. Molina, «Costa Rica será 100% renovable en 2030,»pv magazine Latin America, 2021. [Online]. Available: https://www.pv-magazine-latam.com/2021/01/12/costa-ricasera-100-renovable-en-2030/. [Accessed: 13- May- 2021].spa
dcterms.references«COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS, »Apolo.creg.gov.co, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035 c2c4474f05258243005a1191. [Accessed: 13- May- 2021].spa
dcterms.referencesC. Ouro Doral, Modelado, simulación y control de un aerogenerador de velocidad variable.. 2016.spa
dcterms.referencesR. D. Bufanio, “Modelado y simulación de conversión de energía eólica PMSG para sistema aislado,” pp. 105–122spa
dcterms.referencesM. A. Ponce-jara, C. Velásquez-figueroa, and G. Velásquez-figueroa, “Modeling, design and simulation of photovoltaic solar micro-generation systems using MATLAB,” vol. V, pp. 98–130, 2020.spa
dcterms.referencesR. C. ury, Tilok Boruah, “Design of a Micro-Grid System in Matlab/Simulink,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 07, pp. 5262–5269, 2015, doi: 10.15680/ijirset.2015.0407030 .spa
dcterms.referencesA. Fathy, K. Kaaniche, and T. M. Alanazi, “Recent Approach Based Social Spider Optimizer for Optimal Sizing of Hybrid PV/Wind/Battery/Diesel Integrated Microgrid in Aljouf Region,” IEEE Access, vol. 8, pp. 57630–57645, 2020, doi: 10.1109/ACCESS.2020.2982805.spa
dcterms.referencesA. Muhtadi and A. M. Saleque, “Modeling and simulation of a microgrid consisting solar PV & DFIG based wind energy conversion system for St. Martin’s island,” 2017 IEEE 3rd Int. Conf. Eng. Technol. Soc. Sci. ICETSS 2017, vol. 2018-January, pp. 1–6, 2018, doi: 10.1109/ICETSS.2017.8324152.spa
dcterms.references"¿Cómo funcionan las plantas fotovoltaicas?", Iberdrola, 2021. [Online]. Available: https://www.iberdrola.com/medio-ambiente/que-es-energia-fotovoltaica. [Accessed: 14- May- 2021].spa
dcterms.references"▷Energía Solar | Qué es la Energía Solar, Ventajas y ahorro", Twenergy, 2021. [Online]. Available: https://twenergy.com/energia/energia-solar/. [Accessed: 14- May- 2021].spa
dcterms.references"La energía solar y eólica alcanzó el 67% de la capacidad nueva de energía eléctrica agregada a nivel mundial en 2019", Bloomberg.com, 2020. [Online]. Available: https://www.bloomberg.com/latam/blog/la-energia-solar-y-eolica-alcanzo-el-67-de-lacapacidad-nueva-de-energia-electrica-agregada-a-nivel-mundial-en-2019/. [Accessed: 14- May- 2021].spa
dcterms.references"RADIACIÓN SOLAR - IDEAM", Ideam.gov.co, 2014. [Online]. Available: http://www.ideam.gov.co/web/tiempo-y-clima/radiacion-solar-ultravioleta. [Accessed: 14- May- 2021].spa
dcterms.references"Radiación Solar | Tipos, conceptos y aplicaciones", Sfe-solar.com, 2021. [Online]. Available: https://www.sfe-solar.com/noticias/articulos/radiacion-solar/. [Accessed: 14- May- 2021].spa
dcterms.references"Global Solar Atlas", Globalsolaratlas.info, 2021. [Online]. Available: https://globalsolaratlas.info/ma. [Accessed: 14- May- 2021].spa
dcterms.references"Energía eólica. Qué es, cómo funciona, ventajas y desventajas", factorenergia, 2018. [Online]. Available: https://www.factorenergia.com/es/blog/eficienciaenergetica/energia-eolica/. [Accessed: 14- May- 2021].spa
dcterms.referencesL. eólica, "La situación mundial de la energía eólica", Cocier.org, 2020. [Online]. Available: http://www.cocier.org/index.php/en/noticias-de-cocier/2148-la-situacionmundial-de-la-energia-eolica. [Accessed: 14- May- 2021] .spa
dcterms.references"Energía Eólica | Antusolar Ltda.", Antusolar.cl, 2021. [Online]. Available: http://www.antusolar.cl/energia-eolica/. [Accessed: 14- May- 2021].spa
dcterms.references"La energía en el viento: densidad del aire y área barrida por el rotor", Xn--drmstrre64ad.dk, 2003. [Online]. Available: http://xn--drmstrre-64ad.dk/wpcontent/wind/miller/windpower%20web/es/tour/wres/enerwind.htm. [Accessed: 14- May- 2021].spa
dcterms.referencesA. F. MALLAGUARI BARROS and F. R. SHICAY ARIAS, “Determinación de parámetros para obtener valores de eficiencia representativos para la enseñanza de las energías renovables (solar, eólica, hidrógeno-electrólisis y pilas de combustible) utilizando el equipo de laboratorio ‘Clean Energy Trainer,’” Univ. Politec. Sales., 2015.spa
dcterms.references"Global Wind Atlas", Globalwindatlas.info, 2021. [Online]. Available: https://globalwindatlas.info/. [Accessed: 18- May- 2021].spa
dcterms.referencesJ. D.C, "Atlas Interactivo - Radiación IDEAM", Atlas.ideam.gov.co, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 18- May- 2021].spa
dcterms.referencesJ. D.C, "Atlas Interactivo - Vientos - IDEAM", Atlas.ideam.gov.co, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html. [Accessed: 18- May- 2021].spa
dcterms.referencesGuiaiso50001.cl, 2021. [Online]. Available: https://guiaiso50001.cl/guia/wpcontent/uploads/2017/05/Casos_exito_correccion9.pdf. [Accessed: 18- May- 2021].spa
dcterms.references"AEC - Sistemas de gestion energetica", Aec.es, 2019. [Online]. Available: https://www.aec.es/web/guest/centro-conocimiento/sistemas-de-gestion-energetica. [Accessed: 18- May- 2021].spa
dcterms.references"¿Qué es un Sistema de Gestión Energética (SGEn)? | Meinsa", Meinsa, 2021. [Online]. Available: https://meinsa.com/2020/03/que-es-un-sistema-de-gestionenergetica-sgen/. [Accessed: 18- May- 2021].spa
dcterms.references"Introducción a las Microrredes - CENER - Centro Nacional de Energías Renovables", CENER - Centro Nacional de Energías Renovables, 2021. [Online]. Available: http://www.cener.com/introduccion-a-lasmicrorredes/#:~:text=El%20CERTS%20define%20la%20microrred,energ%C3%ADa%20el%C3%A9ctrica%20como%20energ%C3%ADa%20t%C3%A9rmica.&text=As %C3%AD%20pues%2C%20con%20la%20adopci%C3%B3n,dentro%20del%20sistem a%20de%20distribuci%C3%B3n. [Accessed: 18- May- 2021].spa
dcterms.references[3]"MATLAB - MathWorks", Mathworks.com, 2021. [Online]. Available: https://www.mathworks.com/products/matlab. [Accessed: 18- May- 2021].spa
dcterms.references"Simulink - Simulación y diseño basado en modelos", La.mathworks.com, 2021. [Online]. Available: https://la.mathworks.com/products/simulink.html. [Accessed: 18- May- 2021].spa
dcterms.referencesMirjalili, S. and Lewis, A. (2016) “The whale optimization algorithm,” Advances in Engineering Software, 95, pp. 51–67. Available at: https://doi.org/10.1016/j.advengsoft.2016.01.008.spa
dcterms.referencesWatkins, W.A. and Schevill, W.E. (1979) “Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, megaptera novaeangliae, and Balaenoptera physalus,” Journal of Mammalogy, 60(1), pp. 155163. Available at: https://doi.org/10.2307/1379766.spa
dcterms.referencesWatkins, W.A. and Schevill, W.E. (1979) “Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, megaptera novaeangliae, and Balaenoptera physalus,” Journal of Mammalogy, 60(1), pp. 155163. Available at: https://doi.org/10.2307/1379766.spa
dcterms.referencesMirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) “Grey Wolf optimizer,” Advances in Engineering Software, 69, pp. 46–61. Available at: https://doi.org/10.1016/j.advengsoft.2013.12.007.spa
dcterms.referencesDai, S., Niu, D. and Li, Y. (2018) “Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm,” Energies, 11(1), p. 163. Available at: https://doi.org/10.3390/en11010163.spa
dcterms.referencesMuro, C. et al. (2011) “Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations,” Behavioural Processes, 88(3), pp. 192–197. Available at: https://doi.org/10.1016/j.beproc.2011.09.006.spa
dcterms.referencesScharf, I., Subach, A. and Ovadia, O. (2008) “Foraging behaviour and habitat selection in pit-building antlion larvae in constant light or dark conditions,” Animal Behaviour, 76(6), pp. 2049–2057. Available at: https://doi.org/10.1016/j.anbehav.2008.08.023.spa
dcterms.referencesGriffiths, D. (1986) “Pit construction by Ant-lion larvae: A cost-benefit analysis,” The Journal of Animal Ecology, 55(1), p. 39. Available at: https://doi.org/10.2307/4691.spa
dcterms.referencesScharf, I. and Ovadia, O. (2006) “Factors influencing site abandonment and site selection in a sit-and-wait predator: A review of pit-building antlion larvae,” Journal of Insect Behavior, 19(2), pp. 197–218. Available at: https://doi.org/10.1007/s10905-0069017-4.spa
dcterms.referencesMirjalili, S. (2015) “The Ant Lion optimizer,” Advances in Engineering Software, 83, pp. 80–98. Available at: https://doi.org/10.1016/j.advengsoft.2015.01.010.spa
dcterms.referencesAkram, U., Khalid, M. and Shafiq, S. (2017) “An innovative hybrid wind-solar and battery-supercapacitor Microgrid System—development and optimization,” IEEE Access, 5, pp. 25897–25912. Available at: https://doi.org/10.1109/access.2017.2767618.spa
dcterms.referencesFathy, A., Kaaniche, K. and Alanazi, T.M. (2020) “Recent approach based social spider optimizer for optimal sizing of hybrid PV/wind/battery/diesel integrated microgrid in Aljouf Region,” IEEE Access, 8, pp. 57630–57645. Available at: https://doi.org/10.1109/access.2020.2982805.spa
dcterms.referencesFathy, A., Kaaniche, K. and Alanazi, T.M. (2020) “Recent approach based social spider optimizer for optimal sizing of hybrid PV/wind/battery/diesel integrated microgrid in Aljouf Region,” IEEE Access, 8, pp. 57630–57645. Available at: https://doi.org/10.1109/access.2020.2982805.spa
dcterms.referencesKharrich, M. et al. (2021) “Developed approach based on Equilibrium Optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco,” IEEE Access, 9, pp. 13655–13670. Available at: https://doi.org/10.1109/access.2021.3051573.spa
dcterms.referencesKharrich, M. et al. (2021) “Developed approach based on Equilibrium Optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco,” IEEE Access, 9, pp. 13655–13670. Available at: https://doi.org/10.1109/access.2021.3051573.spa
dcterms.referencesKharrich, M. et al. (2021) “Developed approach based on Equilibrium Optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco,” IEEE Access, 9, pp. 13655–13670. Available at: https://doi.org/10.1109/access.2021.3051573.spa
dcterms.referencesKharrich, M. et al. (2021) “Developed approach based on Equilibrium Optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco,” IEEE Access, 9, pp. 13655–13670. Available at: https://doi.org/10.1109/access.2021.3051573.spa
dcterms.referencesKharrich, M. et al. (2021) “Developed approach based on Equilibrium Optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco,” IEEE Access, 9, pp. 13655–13670. Available at: https://doi.org/10.1109/access.2021.3051573.spa
dcterms.referencesKaabeche, A., Belhamel, M. and Ibtiouen, R. (2011) “Techno-economic valuation and optimization of integrated photovoltaic/wind energy conversion system,” Solar Energy, 85(10), pp. 2407–2420. Available at: https://doi.org/10.1016/j.solener.2011.06.032.spa
dcterms.referencesFathy, A. (2016) “A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt,” Renewable Energy, 95, pp. 367–380. Available at: https://doi.org/10.1016/j.renene.2016.04.030.spa
dcterms.referencesFathy, A. (2016) “A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt,” Renewable Energy, 95, pp. 367–380. Available at: https://doi.org/10.1016/j.renene.2016.04.030.spa
dcterms.referencesFathy, A. (2016) “A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt,” Renewable Energy, 95, pp. 367–380. Available at: https://doi.org/10.1016/j.renene.2016.04.030.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesRamli, M.A.M., Bouchekara, H.R.E.H. and Alghamdi, A.S. (2018) “Optimal sizing of PV/Wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, 121, pp. 400–411. Available at: https://doi.org/10.1016/j.renene.2018.01.058.spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesStructuralia (no date) Aerogeneradores de Eje Vertical y horizontal: Tipos, pros y Contras, Aerogeneradores de eje vertical y horizontal: tipos, pros y contras. Available at: https://blog.structuralia.com/aerogeneradores-de-eje-vertical-y-horizontal-tiposventajas-e-inconvenientes (Accessed: October 24, 2022).spa
dcterms.referencesBranker, K., Pathak, M., & Pearce, J. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470-4482. doi:10.1016/j.rser.2011.07.104spa
dcterms.referencesRodrigues, S., Torabikalaki, R., Faria, F., Cafôfo, N., Chen, X., Ivaki, A. R., . . . Morgado-Dias, F. (2016). Economic feasibility analysis of small scale PV systems in different countries. Solar Energy, 131, 81-95. doi:10.1016/j.solener.2016.02.019spa
dc.contributor.corporatenameUniversidad Francisco de Paula Santanderspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Electrónico(a)spa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeSan José de Cúcutaspa
dc.publisher.programIngeniería Electrónicaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembEólico
dc.subject.lembEstudio fotovoltaico
dc.subject.proposalFotovoltaicospa
dc.subject.proposalEólicospa
dc.subject.proposalMicrorredspa
dc.subject.proposalAlgoritmospa
dc.subject.proposalPotenciaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.juryMedina Delgado, Byron
dc.contributor.juryPuerto López, Karla Cecilia


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem